随着方法的发展,反转主要分为两个步骤。第一步是图像嵌入,其中编码器或优化过程嵌入图像以获取相应的潜在代码。之后,第二步旨在完善反转和编辑结果,我们将其命名为“结果”。尽管第二步显着提高了忠诚度,但感知和编辑性几乎没有变化,深处取决于第一步中获得的反向潜在代码。因此,一个关键问题是在保留重建保真度的同时获得更好的感知和编辑性的潜在代码。在这项工作中,我们首先指出,这两个特征与合成分布的逆代码的对齐程度(或不对准)有关。然后,我们提出了潜在空间比对反转范式(LSAP),该范式由评估度量和解决方案组成。具体来说,我们引入了归一化样式空间($ \ Mathcal {s^n} $ space)和$ \ Mathcal {s^n} $ cosine距离(SNCD)以测量反转方法的不对准。由于我们提出的SNCD是可区分的,因此可以在基于编码器和基于优化的嵌入方法中进行优化,以执行均匀的解决方案。在各个域中进行的广泛实验表明,SNCD有效地反映了感知和编辑性,并且我们的对齐范式在两个步骤中都归档了最新的。代码可在https://github.com/caopulan/ganinverter上找到。
translated by 谷歌翻译
早期退出是提高深网推理效率的有效范例。通过构建具有不同资源需求的分类器(出口),此类网络可以在早期出口处输出简单的样本,从而消除了执行更深层的需求。尽管现有作品主要关注多EXIT网络的建筑设计,但此类模型的培训策略在很大程度上没有探索。当前的最新模型在培训期间对所有样品进行了相同的处理。但是,在测试过程中的早期外观行为被忽略了,从而导致训练和测试之间存在差距。在本文中,我们建议通过样品加权来弥合这一差距。从直觉上讲,简单的样品通常在推理期间在网络早期退出,应该为培训早期分类器提供更多贡献。但是,晚期分类器应强调硬样品的培训(主要是从更深层退出)。我们的工作建议采用一个体重预测网络,以加重每个出口处不同训练样本的损失。这个重量预测网络和骨干模型在具有新的优化目标的元学习框架下共同优化。通过将推断期间的适应性行为带入训练阶段,我们表明拟议的加权机制始终提高分类准确性和推理效率之间的权衡。代码可在https://github.com/leaplabthu/l2w-den上找到。
translated by 谷歌翻译
可扩展的网络已经证明了它们在处理灾难性遗忘问题方面的优势。考虑到不同的任务可能需要不同的结构,最近的方法设计了通过复杂技能适应不同任务的动态结构。他们的例程是首先搜索可扩展的结构,然后训练新任务,但是,这将任务分为多个培训阶段,从而导致次优或过度计算成本。在本文中,我们提出了一个名为E2-AEN的端到端可训练的可自适应扩展网络,该网络动态生成了新任务的轻量级结构,而没有任何精确的先前任务下降。具体而言,该网络包含一个功能强大的功能适配器的序列,用于扩大以前学习的表示新任务的表示形式,并避免任务干扰。这些适配器是通过基于自适应门的修剪策略来控制的,该策略决定是否可以修剪扩展的结构,从而根据新任务的复杂性动态地改变网络结构。此外,我们引入了一种新颖的稀疏激活正则化,以鼓励模型学习具有有限参数的区分特征。 E2-aen可以降低成本,并且可以以端到端的方式建立在任何饲喂前架构上。关于分类(即CIFAR和VDD)和检测(即可可,VOC和ICCV2021 SSLAD挑战)的广泛实验证明了提出的方法的有效性,从而实现了新的出色结果。
translated by 谷歌翻译
我们为深神经网络引入了两个低位训练后训练量化(PTQ)方法,该方法满足硬件要求,并且不需要长期重新训练。两次量化的能力可以将通过量化和去除化引入的乘法转换为许多有效加速器采用的位移位。但是,两次量表因子的候选值较少,这会导致更多的舍入或剪辑错误。我们提出了一种新型的两个PTQ框架,称为RAPQ,该框架被动态调整了整个网络的两个尺度,而不是静态地确定它们一层。从理论上讲,它可以权衡整个网络的舍入错误和剪辑错误。同时,RAPQ中的重建方法基于每个单元的BN信息。对Imagenet的广泛实验证明了我们提出的方法的出色性能。没有铃铛和哨声,REPQ在RESNET-18和MOBILENETV2上的准确度可以达到65%和48%,分别具有INT2激活INT4的精度。我们是第一个为低位PTQ提出更受限制但对硬件友好型的两次量化方案的人,并证明它可以达到与SOTA PTQ方法几乎相同的准确性。该代码已发布。
translated by 谷歌翻译
红外小目标检测是在地球观测,军事侦察,救灾等许多领域的重要问题,最近受到了广泛的关注。本文介绍了注意引导金字塔上下文网络(AGPCNET)算法。其主要组件是注意引导的上下文块(AGCB),上下文金字塔模块(CPM)和非对称融合模块(AFM)。AGCB将特征映射分为修补程序以计算本地关联,并使用全局上下文注意(GCA)来计算语义之间的全局关联,CPM集成来自多尺度AGCB的功能,AFM从功能集成了低级和深级语义集成 - 融合视角,增强了特征的利用。实验结果表明,AGPCNET在两个可用的红外小目标数据集上实现了新的最先进的性能。源代码可在https://github.com/tianfang-zhang/agpcnet上获得。
translated by 谷歌翻译
Decompilation aims to transform a low-level program language (LPL) (eg., binary file) into its functionally-equivalent high-level program language (HPL) (e.g., C/C++). It is a core technology in software security, especially in vulnerability discovery and malware analysis. In recent years, with the successful application of neural machine translation (NMT) models in natural language processing (NLP), researchers have tried to build neural decompilers by borrowing the idea of NMT. They formulate the decompilation process as a translation problem between LPL and HPL, aiming to reduce the human cost required to develop decompilation tools and improve their generalizability. However, state-of-the-art learning-based decompilers do not cope well with compiler-optimized binaries. Since real-world binaries are mostly compiler-optimized, decompilers that do not consider optimized binaries have limited practical significance. In this paper, we propose a novel learning-based approach named NeurDP, that targets compiler-optimized binaries. NeurDP uses a graph neural network (GNN) model to convert LPL to an intermediate representation (IR), which bridges the gap between source code and optimized binary. We also design an Optimized Translation Unit (OTU) to split functions into smaller code fragments for better translation performance. Evaluation results on datasets containing various types of statements show that NeurDP can decompile optimized binaries with 45.21% higher accuracy than state-of-the-art neural decompilation frameworks.
translated by 谷歌翻译
Nearest-Neighbor (NN) classification has been proven as a simple and effective approach for few-shot learning. The query data can be classified efficiently by finding the nearest support class based on features extracted by pretrained deep models. However, NN-based methods are sensitive to the data distribution and may produce false prediction if the samples in the support set happen to lie around the distribution boundary of different classes. To solve this issue, we present P3DC-Shot, an improved nearest-neighbor based few-shot classification method empowered by prior-driven data calibration. Inspired by the distribution calibration technique which utilizes the distribution or statistics of the base classes to calibrate the data for few-shot tasks, we propose a novel discrete data calibration operation which is more suitable for NN-based few-shot classification. Specifically, we treat the prototypes representing each base class as priors and calibrate each support data based on its similarity to different base prototypes. Then, we perform NN classification using these discretely calibrated support data. Results from extensive experiments on various datasets show our efficient non-learning based method can outperform or at least comparable to SOTA methods which need additional learning steps.
translated by 谷歌翻译
In recent years, arbitrary image style transfer has attracted more and more attention. Given a pair of content and style images, a stylized one is hoped that retains the content from the former while catching style patterns from the latter. However, it is difficult to simultaneously keep well the trade-off between the content details and the style features. To stylize the image with sufficient style patterns, the content details may be damaged and sometimes the objects of images can not be distinguished clearly. For this reason, we present a new transformer-based method named STT for image style transfer and an edge loss which can enhance the content details apparently to avoid generating blurred results for excessive rendering on style features. Qualitative and quantitative experiments demonstrate that STT achieves comparable performance to state-of-the-art image style transfer methods while alleviating the content leak problem.
translated by 谷歌翻译
In contrast to the control-theoretic methods, the lack of stability guarantee remains a significant problem for model-free reinforcement learning (RL) methods. Jointly learning a policy and a Lyapunov function has recently become a promising approach to ensuring the whole system with a stability guarantee. However, the classical Lyapunov constraints researchers introduced cannot stabilize the system during the sampling-based optimization. Therefore, we propose the Adaptive Stability Certification (ASC), making the system reach sampling-based stability. Because the ASC condition can search for the optimal policy heuristically, we design the Adaptive Lyapunov-based Actor-Critic (ALAC) algorithm based on the ASC condition. Meanwhile, our algorithm avoids the optimization problem that a variety of constraints are coupled into the objective in current approaches. When evaluated on ten robotic tasks, our method achieves lower accumulated cost and fewer stability constraint violations than previous studies.
translated by 谷歌翻译
The surrogate loss of variational autoencoders (VAEs) poses various challenges to their training, inducing the imbalance between task fitting and representation inference. To avert this, the existing strategies for VAEs focus on adjusting the tradeoff by introducing hyperparameters, deriving a tighter bound under some mild assumptions, or decomposing the loss components per certain neural settings. VAEs still suffer from uncertain tradeoff learning.We propose a novel evolutionary variational autoencoder (eVAE) building on the variational information bottleneck (VIB) theory and integrative evolutionary neural learning. eVAE integrates a variational genetic algorithm into VAE with variational evolutionary operators including variational mutation, crossover, and evolution. Its inner-outer-joint training mechanism synergistically and dynamically generates and updates the uncertain tradeoff learning in the evidence lower bound (ELBO) without additional constraints. Apart from learning a lossy compression and representation of data under the VIB assumption, eVAE presents an evolutionary paradigm to tune critical factors of VAEs and deep neural networks and addresses the premature convergence and random search problem by integrating evolutionary optimization into deep learning. Experiments show that eVAE addresses the KL-vanishing problem for text generation with low reconstruction loss, generates all disentangled factors with sharp images, and improves the image generation quality,respectively. eVAE achieves better reconstruction loss, disentanglement, and generation-inference balance than its competitors.
translated by 谷歌翻译